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Abstract—-Some new dielectric waveguide structures suitable for
millimeter-wave and optical integrated circuits are presented. A
method of analyzing wave propagation in these guides is developed
by assuming simple field distribution and approximating the various
regions of the guides in ferms of effective dielectric constants.
The mathematical formulation utilized results in simple eigenvalue
equations from which the dispersion characteristics of the wave-
guides are readily obtained. Experimental results are described and
the agreement between theory and experiment is shown to be quite
good.

1. INTRODUCTION

N RECENT YEARS much research has been directed

towards the use of millimeter- and submillimeter-wave
frequencies for the transmission of information. As
conventional metal waveguides become quite lossy and
more difficult to fabricate as the wavelengths involved
become shorter, alternative waveguiding structures made
from dielectric materials have been proposed. Dielectric
rectangular guides for millimeter-wave and optical
frequencies have been described by a number of authors
[11-[5]

In this paper three new types of waveguide structures
are presented, and a method of obtaining their theoretical
dispersion characteristics and field distributions is devel-
oped. Fig. 1 depicts the coupled-line cross sections of
these guides. The same analytical technique is easily
extended to the single-line case of each waveguide.

The strip dielectric guide [IFig. 1(a) ] and the insulated
image guide [ Fig. 1(b) ] both utilize a conducting ground
plane which may be used for heat sinking and/or de
biasing circuits. Thus these types of guides are especially
well suited for millimeter-wave integrated ecircuits in-
volving active devices requiring de power [67, [7].

In dielectric waveguides most of the energy is confined
to propagate in the region having the highest dielectric
constant. In the strip dielectric guide [Fig. 1(a)] this
confinement of energy occurs in the dielectric layer which
is most easily and accurately fabricated, thus minimizing
radiation losses due to mechanical irregularities on the
side walls. On the other hand, the insulated image guide
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Fig. 1. Coupled dielectric-waveguide cross sections. (a) Strip di-
electric guide. (b) Insulated image guide. (c) Strip-slab guide.

[Fig. 1(b)] has the advantage that most of the energy
travels in the upper dielectric rod away from the conduct-
ing ground plane and its associated losses.! The strip-slab
guide [Fig. 1(c)] does not have a ground plane as it is
designed for use in optical integrated circuits.

II. METHOD OF ANALYSIS

Dielectric rectangular waveguides will support the
propagation of waves having two possible field configura-
tions, classified as the F,# and F,; modes [8], where the
subscripts p and ¢ indicate the number of extrema of
the electric field in the y and = directions, respectively.
These modes are commonly referred to as being hybrid
in nature because they do not possess the simpler field
distributions of either the transverse magnetic (TM)
or the transverse electric (TE) modes common to metal

1 For the strip dielectric guide, conductor losses may be reduced
by inserting another dielectric layer between the guiding layer and
the ground plane and choosing its dielectric constant smaller than
that of the guiding layer.
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rectangular waveguides. We can, however, express the
solution of Maxwell’s equations for the rectangular guide
in terms of two scalar potentials, ¢¢ and ¢* The field
components become [9]

1 a2¢e
E,. = k.p” 1
e&(y) dydz +onbid M
1 o2 ’
-— 22 —_——— ¢ 2
B, = - W (k M) ¢ (2)
—jk.8¢° . d¢"
E,=——F— — —
&(y) oy TR oz @
a2¢h
z = = kz °
H wek,¢° + ayor (4)
9? A
H, = (k? - a—ﬁ) ¢ (5)
L
Hz = Jwe oz Jity ay (6)

where ¢ and u are the permittivity and permeability of
free space, e (y) is a relative dielectric constant in the
region of application, and k. is the propagation constant
in the # direction.

Since the E,¢ modes have principal E- and H-field
components in the y and z directions, respectively, ¢°
has the dominant contribution to the modal field. Simi-
larly, for the E, modes, the principal field components
are E, and H,, and ¢* has the dominant contribution to
the modal field. Hence we can set ¢* = 0 in (1) through
(6) and write the solution for the E,# modes, or set
¢° = 0 and write the solution for the E,,* modes. Since
both sets of modes are similar, we will concern ourselves
here with only the E,# modes. The solution for the pro-
pagation constant k. found in this manner will be quite
close to the solution obtained using the more rigorous
approach of using both ¢ and ¢° in the field expressions.

III. FORMULATION OF THE BOUNDARY
VALUE PROBLEM

In our analysis we extend the method of effective
dielectric constants originally developed by Knox and
Toulios for the image guide [3] and the “insular guide”
(insulated image guide) [7]. The analytical approach is
essentially the same for all three types of guide structures
studied. The mathematical formulation will be presented
in depth for only the strip dielectric guide. The significant
differences in the analysis of the other two types of guides
will be pointed out later. In the case of insulated image
guides, the analysis actually coincides with that reported
in [77. In all cases we will assume the dielectric materials
and conductor to be lossless.

A rigorous solution of Maxwell’s equations for the strip
dielectric guide structure [Fig. 1(a)] would be exceed~
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Fig. 2. Three steps in dielectric-waveguide analysis. (a) Structure
for analyzing y variation in single-layered regions. (b) Structure
for analyzing y variation in double-layered regions. (¢) Struecture
for analyzing x variation using concept of effective dielectric
constant.

ingly complex. However, it is possible to introduce a
simplification by the use of the concept of effective
dielectric constants. If regions I, IT, I11, IV, and V in Fig.
1(a) are taken to be infinitely long in the x direction, we
have five multilayered slab waveguides. Regions I, III,
and V will then have the cross section depicted in Fig.
2(a), while the cross sections of regions I and IV will
become that of Fig. 2(b). The propagation constants for
these single- and double-slab waveguides can be deter-
mined by matching the tangential electric and magnetic
fields across each boundary. Both of these structures
consisting of one or two dielectric slabs with a conducting
ground plane on one side and air on the other can be
equivalently replaced by an infinite homogeneous region
having some effective dielectric constant defined analy-
tically later in our analysis. The effective dielectric
constant may be interpreted as that of a hypothetical
medium in which the propagation constant is identical to
that of the original structure.

Having determined the effective dielectric constants of
the various regions, the guide in Fig. "1(a) can then be
analyzed by modeling it with the five-layered structure
shown in Fig. 2(c), where eq is the effective dielectric
constant of the single-slab guide and e is the effective
dielectric constant of the double-slab guide. The propaga~
tion constant k, for the original guide is delermined by
matching the tangential fields on the boundaries in Fig.
2(c). The individual steps in this method of analysis
will now be discussed in greater detail.

IV. DERIVATION OF THE EIGENVALUE
EQUATIONS

We  first derive the eigenvalue equation describing
wave propagation in the double-layered dielectric slab
shown in Fig. 2(b), which corresponds to regions II and
IV in Fig. 1(a). Noting that for the E, modes ¢* = 0, we



790

see from (1)—(6) that the tangential fields we are in-
terested in matching in Fig. 2(b) are the H; and E, com-
ponents. The relationships between these components and
¢, are ' )

H,~ ¢° (7

1 9¢°
E, ~ —=. 8
: &(y) 9y ®

For the structure in Fig. 2(b), we know most of the
power will travel inside the slab having the highest di-
electric constant. We therefore write the field distribution
¢° as sinusoidally varying in the y direction in the ¢ region.
In the e region we allow for the possibility of the field
being either sinusoidal or exponentially decaying by
expressing it in terms of a sum of hyperbolic functions.
Outside the guide in the ¢ region the field will exponentially
decay in the y direction. The presence of the conducting
ground plane at y = 0 forces the tangential electric field
to be zero there. Since the guide is assumed to be in-
finitely wide, there is no z variation in the fields. We there-
fore write the fields as

$@) =Acosky, 0<y<uy (9)

¢*(y) = B°cosh [m(y — y1) ] + Besinh [n(y — y1) ],
n<y<y (10)

o(y) =Cexp[—m(y —y)], ®<y (11)

where 5 and 5. are attenuation constants in their respective
regions and subject to the relation

Bose? = ek — b = ek + n22 = eoko? + no? (12)

where 5, must be real and greater than zero to ensure the
field will diminish for large y, and % may be either real
or imaginary. In (12) ko represents the free-space wave-
number; e, €, and e are the relative dielectric constants of
their respective regions (e is unity in air); and k.o is
the propagation constant of the double-slab waveguide in
Fig. 2(b).

Matching the field components H, and E, at y = y1, we
obtain

B (13)

A cos kg =
_A,k” sin ki _ Bsy (14)
€1 €

and similarly at y = y»

Be cosh [ns(ys — y1)] + Brsinh [ms(ys — )] = € (15)
”— {Be sinh [s(y> — 1) ] + B cosh [ (g2 — 91) ]}
= =2¢. (16)

The four equations (13)-(16) can be algebraically mani-
pulated to eliminate the four constants 4, B°, B, and C,
leaving the eigenvalue equation for k,
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. e’ .
k, sin kyyn {% sinh [, (%2 — 1) ]
) ,

+ e cosh [na(y2 — Z/l)]}

— & cos kyyi{ems sinh [me(y: — w1) ]
+ emo cosh [n2(y: — y1) ]} = 0. (17)

The lowest value of &, will produce the fundamental mode
E,¥; the second lowest value of k, will produce the E ¥
modes, and so on, where the subscript p is the mode index
in the z direction of the original structure and will be
determined in a later step of our analysis. To positively
identify what mode a particular solution corresponds to,
it is best to look at the field distribution ¢°¢(y). This can be
done by choosing one of the constants in (13)-(16)
arbitrarily and solving for the others. The resulting ex-
pressions give the relative magnitude of the fields, from
which the number of extrema of the electric field can be
readily determined.
We may write (12) in the equivalent form

kszZ = 592k02 (18)
where
k 2
€0 = € — 761;;' (19)

The effective dielectric constant e.. will be used later in our
analysis when we will model the layered structure of
Fig. 2(b) with a single homogeneous region having a di-
electric constant eq.

Using the same procedure presented for the double-
layered slab in Fig. 2(b), a second eigenvalue equation
describing wave propagation in the single-layered slab
shown in Fig. 2(a) is derived. This single slab corresponds
to regions I, ITT, and V of Fig. 1(a). ¢°is again assumed to
be sinusoidally varying in the ¢ region and exponentially
decaying outside the slab. Matching H, and E, on the
boundary at y = y; gives the eigenvalue equation for k,

(20)

We can express the attenuation constant 5 in terms of k,
by the relation

k. = ek — ]Ey2 = gko? + 7 (21)

where k.. is the propagation constant of the single-slab
waveguide in Fig. 2(a). The effective dielectric constant
ea for this structure is defined by
k2
€l — €1 — %0—2 .
N V. PROPAGATION CONSTANT OF THE
STRIP DIELECTRIC GUIDE

We are now ready to analyze the five-layered vertical
slab structure in Fig. 2(c), having determined the effec-
tive dielectric constants. es and ep. Since the slabs are
infinite in the y direction, there is only an z variation in the

kyeo sin ks — ne cos by = 0.

:(22)



MC LEVIGE €l al.: WAVEGUIDES FOR IC’S

fields. Most of the energy travels in the two ez regions
(IT and IV) where we will assume a sinusoidally varying
field. The two outer regions (I and V) will have expo-
nentially deeaying fields, while the region IIT fields will be
written as the sum of hyperbolic functions. The field ex-
pressions are, therefore,

¢°(x) = Avexp [£(x — @) ], z<m (23)
¢°(x) = Br°cos [ko(x — 21) ] + Bi*sin [k.(x — 1) ],
n<zr<n (249
¢¢(z) = Cr°cosh [£(z — 22) ] + Cvf sinh [E(x — 22) ],
n<ax<wx (25)
¢°(x) = Dy cos [k.(x — x3) ]+ Dresin [k (x — x3) ],
rs<xr<ua (26)
¢°(x) = Erexp [—&(z — 24) ], <z (27)

where k, is the propagation constant in the r direction in
the €. regions and £ is the attenuation constant in the e,
regions. The analogous equation to (12) and (21) is

k2 = eaks® + 8 = eoke® — k2 (28)

where k. is the propagation constant of the five-layered
structure in Fig. 2(e) and is assumed in the present analy-
sis to be identical to that of the original structure, the strip
dielectric guide.

The tangential fields we are interested in matching are
the E, and H,. Trom (2) and (6) we note the following
relations:

B, ~ ¢ (29)
7~ (30)
dx

By matching the fields at each dielectric interface and
eliminating the constants, we obtain the eigenvalue
equation for k,

{T:& cosh [£(xs — @2) ] — Tak, sinh [E(xs — 22) |} T
— {Tok, cosh [£(xs — x2) ]
— Thésinh [$(zs — 29) |}Ts = 0

where

(31)

Ty = &sin [ka(zs — 25) ] + ka cos [ka(a — 23) ]

Ty = ks sin [ka(2s — ws) ] — £ cos [k (25 — 25) |

Tz = tk, cos [ko (22 — m1) ] + £ sin [k, (12 — 31) ]

Te = —k2sin [k, (2 — &1) ] + £ks cos [k (22 — @) .

After using the computer to solve for k., we can then use
(28) and calculate k, and, hence, the dispersion charac-
teristics of the original waveguide.

Again we are confronted with the same uncertainty as to
what mode a particular solution of (31) corresponds.
The relative magnitude of the field distribution ¢¢(x) can
be determined as before by choosing one of the constants
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in (23)-(27) to ke arbitrary and then solving for the
others through use of the boundary conditions. The sub-
seript p in the K, modes is given by the number of
extrema of ¢*(x).

The special case of the single line can be derived from the
coupled-line analysis by letting the separation between
guides go to infinity and taking the analytical limit. If we
let 23 — @, — o, the eigenvalue equation (31) reduces to

(8 — k) sin [k (22 — 1) ]

+ 28k, cos [k (2 — @) = 0. (32)

VI. EXTENSION OF ANALYSIS TO THE
INSULATED IMAGE GUIDE

Applying the same method of analysis to the insulated
image guide [Fig. 1(b)] is straightforward. Since most of
the energy will travel in the two higher dielectric-constant
regions, we will neglect the fields in the shaded regions in
Fig. 1(b). Hence the effective dielectric constant e, in the
single-layered regions (I, II1, and V) is the same as that of
free space (). Regions II and IV are again modeled by
the double-slab guide in Fig. 2(b), and an effective di-
electric constant e, is determined. Fig. 2(e) is then
utilized to analyze wave propagation in the original
structure.

The field expressions ¢°(y) for the slab guide [Fig.
2(b) ], corresponding to regions II and IV of Fig. 1(b),
are somewhat different for the insulated image guide.
Since most of the power travels in the e region, a sinu-
soidal field variation is assumed there. In the lower
dielectric-constant & region, the possibility of the fields
being either exponentially decaying or sinusoidally varying
allows one to express ¢°(y) in terms of the hyperbolic
cosine. Outside the guide the field decays exponentially.

Enforcing the continuity of H, and E, on the dielectric
interfaces, we derive the eigenvalue equation for k,

mseakeyer cosh s cos [y (y2 — y1) ]

+ nseztn sinh gy sin [y (Y2 — 1) ]

— ke cosh mys sin [k, (y2 — y1) ]

(33)

where n; and 53 are attenuation constants subject to the
relation

ks = eko® + 15 = ek — k} = akd + 1’

+ eokyexm sinh mys cos [ky (¥ — y1) ] = 0

(34)

where k.. 1s the propagation constant for the double-slab
guide [Fig. 2(b)] with & > &. The effective dielectric
constant ez 1s given by
k2
W=l (35)
The z variation in the fields is then modeled using Fig.
2(c), and the resulting eigenvalue equation (31) for %, is
identical to that of the strip dielectric guide. The propaga-
tion constant k. of the original guide is likewise given by
(28).
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VII. STRIP-SLAB GUIDE

The preceding analysis is applicable to more exotic
waveguides such as that in Fig. 1(c). This structure,
which we shall refer to as the strip-slab guide, is designed
for use in optical integrated circuits. If one uses the same
analytical approach as before, regions IT and IV in Fig.
1(c) are modeled by a four-layered slab guide with relative
dielectric constants e, €, ez, and e for the various layers. A
field sinusoidally varying in the y direction is assumed in
the highest dielectric-constant (e;) region. In the e region
¢°(y) is written in terms of hyperbolic functions to allow
the field to be either sinusoidal or exponentially decaying.
Outside the guide and in the € substrate, the field decays
exponentially. Matching the tangential fields on each
boundary gives the eigenvalue equation for &,

(Eokygl —_ noele) sin [:ky(yl — yz):l
— (meiG1 + ekyGe) cos [ky(y1 —32) ] = 0 (36)

where

Gy = ke {e3 cosh [me(y. — y3) 1 + ?f sinh [ e (y: — ya)]}
2

Gy = a{me sinh [n:(y2 — y5) 1 + ems cosh [m2(y2 — y5) 1}.

In (36), 10, 72, and 53 are attenuation constants related to
the propagation constant k... of the four-layered slab guide
by

kzs42 = e0'1‘-702 + "702 = 617002 - ky2
= ek -+ ‘/]22 = egho? + 7732- (37)

The effective dielectric constant e of this slab guide is
given by (19).

Regions I, III, and V are modeled by a three-layered
slab guide having relative dielectric constants e, e, and
e. Field variations identical with those assumed in the
same dielectric layers of regions IT and IV are employed to
derive the eigenvalue equation for £,

(momser? — eoesky?) sin [y (y1 — ¥2)]
+ (6051773"‘;@ + 6163770’511) cos [Ey(yl —%)]=0 (38)

where 7, and »; are attenuation constants related to &, by
an equation of the same form as (37). The effective
diclectric constant e: for this slab structure is given by
(22).

Fig. 2(c) is again used as the equivalent slab guide for
which the same eigenvalue equation (31) for k. is derived.
The propagation constant k, for the strip-slab guide is
likewise given by (28).

VIII. EXPERIMENTAL DATA AND
COMPARISON WITH THEORY

Dispersion curves for both the strip dielectric and in-
sulated image guide were obtained experimentally at X
band because of better availability of components designed
to operate at the lower frequencies and greater ease in
fabricating dielectric waveguides with dimensions on the
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order of 1 em. Only the single-line structures were in-
vestigated in the laboratory. A study of coupled trans-
mission lines was done on the computer.

As is evident from Fig. 3, the agreement between experi-
ment and theory is excellent for the strip dielectric guide.
The agreement between theory and experiment is found to
be more sensitive to the geometry of the structure for the
insulated image guide. Increasing the horizontal width
and thus the aspect ratio while holding the other dimen-
sions constant produced closer agreement between theory
and experiment (Fig. 4). However, for the insulated image
guides with smaller aspect ratio, theoretical curves start
deviating from experimental data, although these results
are not presented in graphical forms in this paper. This
sensitivity to the geometry of the guide involved is due to
the assumption in the analysis that each of the various
regions of the guide can be approximated by a homogene-
ous medium having a certain effective dielectric constant
and whose propagation constant is the same as that of an
infinitely wide slab guide. Obviously, the narrower the
various regions of the waveguide, or the greater the
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difference between the relative dielectric constants & and
€1, the less accurate this method becomes. The agreement
between theory and experiment tends to be better for the
strip dielectric guide than for the insulated image guide
because the effective dielectric constants for the various
regions are closer in value for the strip dielectric guide.
The effective dielectric constant of the single-slab regions
of the insulated image guide is always taken to be that of
free space since the fields inside the slab are neglected in
that portion of the analysis.

Studies of the electric field strength as a function of the
distance from the side wall of the double-layered region
were also undertaken. Theoretical field plots are derived by
solving for the constants in the equations for ¢¢(z).
Comparison with experimental data for the strip di-
electric guide and the insulated image guide is good, as
shown in Fig. 5(a) and (b).

Some numerical data for the dispersion characteristics
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Fig. 5. Electric field strength as a function of the horizontal dis-

tance from the side wall of the double-layered region. (a) Strip
dielectric guide. (b) Insulated image guide.
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are shown in Figs. 6-8 for both single and coupled versions
of strip dielectrie, insulated image, and strip-slab guides.
It should be noted that for coupled-guide cases [Figs.
6(b), 7(b), and 8(b)] a slightly different notation has
been used for the even and odd modes referred to in the
literature. In our notation, E;¥ represents the dominant
even mode, while Fy? represents the dominant odd mode.

It should also be mentioned that for coupled line cases
numerical difficulties have been occasionally encountered
when a particular mode is approaching its cutoff. One
source of difficulty occurs when the interval of allowed
solutions does not include its end point. If an actual solu-
tion oceurs very close to the end point of the interval, the
accuracy of the solution may be limited by the number of
significant figures the computer can handle. Another
source of difficulty in searching for zeros of an equation
within an interval using the bisection method is that the
process can require a prohibitively long time because the
interval taken must be small enough so that the function of
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interest will change its sign only once. The dashed lines on
the theoretical dispersion curves are due to these kinds of
numerical problems.

IX. CONCLUSIONS

We have shown the method of analysis, based on the
concept of effective dielectric constant, to be an excellent
approach to the study of certain types of dielectric wave-
guides. However, this approach is only an approximate
technique, and can be expected to work well only for
larger aspect ratios and when the difference between the
relative dielectric constants involved is small.2

The strip dielectric guide and the insulated image guide
are well suited for millimeter-wave circuit integration.
Their simplieity in fabrication and lower material cost give
them the edge over the conventional metal waveguide.
. The efficiency of dielectric guides as transmission lines
may still remain a pfoblem; loss calculations and further

2 Knox and Toulios reported that in their experiments the con-
cept of effective dielectric constant works weH for the insular guide
with any aspect ratio and relative dielectric-constant ratio [3].
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Fig. 8. Numerical data for the dispersion characteristics of a num-
ber of modes in the strip-slab guide. (a) Isolated guide. (b) Coupled
guide.

experimental work at millimeter-wave frequencies such as
those reported in [7] are necessary.
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